Extensions 1→N→G→Q→1 with N=C22 and Q=C32⋊C12

Direct product G=N×Q with N=C22 and Q=C32⋊C12
dρLabelID
C22×C32⋊C12144C2^2xC3^2:C12432,376

Semidirect products G=N:Q with N=C22 and Q=C32⋊C12
extensionφ:Q→Aut NdρLabelID
C22⋊(C32⋊C12) = C625Dic3φ: C32⋊C12/C3×C6S3 ⊆ Aut C22366-C2^2:(C3^2:C12)432,251
C222(C32⋊C12) = C624C12φ: C32⋊C12/C3⋊Dic3C3 ⊆ Aut C22366-C2^2:2(C3^2:C12)432,272
C223(C32⋊C12) = C623C12φ: C32⋊C12/C2×He3C2 ⊆ Aut C2272C2^2:3(C3^2:C12)432,166

Non-split extensions G=N.Q with N=C22 and Q=C32⋊C12
extensionφ:Q→Aut NdρLabelID
C22.(C32⋊C12) = He37M4(2)φ: C32⋊C12/C2×He3C2 ⊆ Aut C22726C2^2.(C3^2:C12)432,137
C22.2(C32⋊C12) = C2×He33C8central extension (φ=1)144C2^2.2(C3^2:C12)432,136

׿
×
𝔽